3D Bioplotter Research Papers

Displaying all papers by L-H. Jiang (2 results)

GelMA Hydrogel Reinforced with 3D Printed PEGT/PBT Scaffolds for Supporting Epigenetically-Activated Human Bone Marrow Stromal Cells for Bone Repair

Journal of Functional Biomaterials 2022 Volume 13, Issue 2, Article 14

Epigenetic approaches using the histone deacetylase 2 and 3 inhibitor-MI192 have been reported to accelerate stem cells to form mineralised tissues. Gelatine methacryloyl (GelMA) hydrogels provide a favourable microenvironment to facilitate cell delivery and support tissue formation. However, their application for bone repair is limited due to their low mechanical strength. This study aimed to investigate a GelMA hydrogel reinforced with a 3D printed scaffold to support MI192-induced human bone marrow stromal cells (hBMSCs) for bone formation. Cell culture: The GelMA (5 wt%) hydrogel supported the proliferation of MI192-pre-treated hBMSCs. MI192-pre-treated hBMSCs within the GelMA in osteogenic culture significantly increased…

MI192 induced epigenetic reprogramming enhances the therapeutic efficacy of human bone marrows stromal cells for bone regeneration

Bone 2021 Volume 153, Article 116138

Human bone marrow stromal cells (hBMSCs) have been extensively utilised for bone tissue engineering applications. However, they are associated with limitations that hinder their clinical utility for bone regeneration. Cell fate can be modulated via altering their epigenetic functionality. Inhibiting histone deacetylase (HDAC) enzymes have been reported to promote osteogenic differentiation, with HDAC3 activity shown to be causatively associated with osteogenesis. Therefore, this study aimed to investigate the potential of using an HDAC2 & 3 selective inhibitor – MI192 to induce epigenetic reprogramming of hBMSCs and enhance its therapeutic efficacy for bone formation. Treatment with MI192 caused a time-dose dependant…